Adhesion properties of a putative polymorphic fimbrial subunit protein from Bifidobacterium longum subsp. longum
نویسندگان
چکیده
In our previous study, we found that the open reading frame bl0675 in the genome of Bifidobacterium longum subsp. longum isolated from human feces encoded a novel putative fimbrial protein, was highly polymorphic, and had five variants (A, B, C, D, and E types). The aim of this study was to evaluate the affinity of these variants to porcine colonic mucins (PCMs). Protein-binding properties were examined using the recombinant BL0675 protein containing a C-terminal 6 × His tag (His-BL0675). Surface plasmon resonance analysis demonstrated that the His-BL0675 A type had strong affinity to PCMs (KD = 9.82 × 10(-8) M), whereas the B, C, D, and E types exhibited little or no binding. In a competitive enzyme-linked immunosorbent assay, His-BL0675 A type binding was reduced by addition of mucin oligosaccharides, suggesting that the binding occurs via carbohydrate chains of PCMs. The localization of BL0675 to the B. longum subsp. longum cell surface was confirmed by western blot analysis using A type polyclonal antibodies. Bacterial adhesion of B. longum subsp. longum to PCMs was also blocked by A type-specific antibodies; however, its adhesion properties were strain specific. Our results suggest that the BL0675 variants significantly contribute to the adhesion of B. longum subsp. longum strains. The expression and the adhesive properties of this protein are affected by genetic polymorphisms and are specific for B. longum subsp. longum strains. However, further studies are required on the properties of binding of these putative fimbrial proteins to the human gastrointestinal tract.
منابع مشابه
Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response
In this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3'sialyllactose and 6'sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis AT...
متن کاملDraft Genome Sequence of the Probiotic Bifidobacterium longum subsp. longum Strain MC-42
Here, we report the draft genome sequence of Bifidobacterium longum subsp. longum strain MC-42 isolated from the feces of a healthy infant, and which was used in the commercially available probiotic product Biovestin.
متن کاملBioaccessible Antioxidants in Milk Fermented by Bifidobacterium longum subsp. longum Strains
Bifidobacterium longum subsp. longum is among the dominant species of the human gastrointestinal microbiota and could thus have potential as probiotics. New targets such as antioxidant properties have interest for beneficial effects on health. The objective of this study was to evaluate the bioaccessibility of antioxidants in milk fermented by selected B. longum subsp. longum strains during in ...
متن کاملBroad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them nondigestible to the host but liable to hydrolytic enzymes of the infant colonic microbiota. Bifidobacteria and, frequently, Bifidobacterium longum strains predominate the colonic microbiota of exclusively breast-fed infants. Among the three recognized subspecies of B. long...
متن کاملComplete Genome Sequence of Bifidobacterium longum GT15: Unique Genes for Russian Strains
In this study, we report the first completely annotated genome sequence of the Russian-origin Bifidobacterium longum subsp. longum strain GT15. We discovered 35 unique genes (UGs) which were detected from only the B. longum GT15 genome and were absent from other B. longum strain genomes (not of Russian origin).
متن کامل